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ABSTRACT

This report summarizes the results of research during

the past two years, in understanding the resolution of the

autoregressive (AR) spectral estimators and developing and

evaluating computationally efficient autoregressive-movinq

average (ARMA) spectral estimators. The loss in the resolution

of the AR spectral estimator in the presence of noise is related

to the appearance of zeros in the z-plane. A parallel resonator

model is developed to relate the loss in resolution (bandwidth

expansion) to the signal-to-noise ratio and parameters of the

noiseless signal model.

A new technique for the identification of the order of

an AR model was derived that shows substantial stability compared

to the popular Akaike Information Criterion method. Order

determination was emphasized, since increase in the order of

the AR spectral estimator, to account for the presence of noise,

is naturally accompanied by larger variance of the estimates and

appearance of spurious peaks.

Several sub-optimum (non-maximum-likelihood) ARMA spectral

estimators were also developed. These methods are computationally

efficient, but statistically not very stable for small data records.

An evaluation of the statistical properties of the different sub-

optimum ARMA techniques led to the evaluation of asymptotic bounds

on the variances of the estimates of the parameters or the poles

and zeros of the model through the evaluation of Fisher's

information matrix. Finally, a modification of Burg's MEM spectral

estimator was developed that improves the accuracy of the spectral

estimates of complex sinusoids and makes the method considerably

more robust.

JAM__



I. INTRODUCTION

The problem of spectral estimation via the autoregressive

(AR) and autoregressive-moving-average (ARMA) modeling of the

observed noisy signal is treated in this report. High resolution

spectral analysis based on the AR model has received much

attention in recent years 1 1 - [ 3 ]. The basic impetus for

taking these approaches is due to the fact that the parametric

modeling schemes are data adaptive and are free from the effects

of window functions that ar-: inherent in the traditional

Blackman and Tukey [ 4 1 type spectral estimators. Furthermore,

the AR model is easily estimated making it useful in applications

such as radar signal processing that require near-real-time

proeessing.

The properties of the AR spectral estimator have been

studied, theoretically in the asymptotic case [ 3 1 , [ 5 1 , [ 6 1

and empirically [ ] , 1 2 1. It has been shown that this

estimator in many cases offers considerably higher resolution

based on the same amount of data, than the Blackman and Tukey

type estimators. Furthermore, the *bove asymptotic and empirical

investigations have shown the variance of the AR estimates to

be comparable to the unsmoothed Blackman and Tukey type estimates,

for the same number of autocorrelation lags. It should be

pointed out, however, that the AR estimates usually require much

fewer lags for the same resolution.

Most practical applications of spectral analysis involve

noisy signals and/or multiple signal and noise mixtures.

Therefore, it is natural to consider the performance of the AR

spectral estimator in the presence of noise. Previous studies
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[ i], [2] had shown resolution degradation in the presence

of noise. The solution presented for improving resolution was

given as increasing the order of the estimator, in a rather

arbitrary fashion.

This report deals with the question of AR signals in noise.

The main thrust of the work reported here was to improve spectral

resolution by using ARMA models for the measured signals.

Specifically some suboptimum but computationally efficient ARMA

spectral estimation algorithms were developed and their properties

studied. In the process of the investigations, an order

determination scheme as well as a new Burg type spectral

estimator, however, were also developed and will be described here.

I.1 Report Outline

This report is organized as follows. First the AR process

is defined. The sum of uncorrelated AR processes and white

noise is then considered and shown to be represented by an

equivalent ARMA process. A multiple resonator model for signals

of interest is presented and shown to be equivalent to the ARMA

model. Resolution degradation as a function of noise and

resonator pole locations is considered and from it some

representative curves of bandwidth expansion are presented.
4

Chapter III. of the report deals with the basic question

of AR model order determination. A new criterion related to that

of Akaike's (AIC) is derived and comparative examples are given.

The next two chapters treat the basic emphasis of this work,

namely that of ARMA spectral estimation. First, several ARMA

schemes are presented that are computationally efficient but sub-

optimum. Sub-optimality is treated with respect to the maximum-

likelihood (ML) estimates of the parameters. The subsequent
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chapter then discusses some statistical properties of classes

of ARMA spectral-estimator, with respect to the statistic used

in the estimation. Here, again, the reference scheme is the

ML estimator. The final chapter of the report deals with a

new scheme, related to Burg's MEM method, which is especially

useful for the common case of sinusoidal signals in noise. This

method is shown to be more robust than the MEM technique, with

better accuracy and equivalent or superior resolution.

.41
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II. AUTOREGRESSIVE SPECTRAL

ESTIMATION OF NOISY SIGNALS

The most popular recent data-adaptive spectral estimation

method is one based on an all-pole model for the siqnal. The

algorithmic approach for the estimation of the parameters of

such a system include, the methods of fitting the autoregressive

(AR) coefficients to the data as well as the popular Burg maximum

entropy method MEM. Because of the popularity of this model

and computational simplicity of its e'timates, the noisy signal

spectral estimation will be confined to autoregressive signal

models. That is, it will be assumed that in the absence of

noise and interference an AR model satisfactorily describes

the signal. Resolution decradation of the AR spectral estimates

in the presence of noise and interference is then investigated

and related to the changes in the model structure.

II.1 The AR Spectral Estimator

A zero-mean time series fx } is said to satisfy an Lt h order

autoregressive model if:

L
xt= a i xt-i +ut (II.1)

i=l

where a.)i denote the AR coefficients and {u } is a zero-mean
1 t

uncorrelated (white) sequence. Another interpretation of the

model in (II.1) is that (a I represent an Lth order one-step ahead

linear predictor of {xt}. If {(i} are then estimated, based on

a minimum mean square error criterion {utI on the averaqe becomes

) an orthogonal sequence. It can be shown (2 ] that the model in

(II1.) leads to a spectral density of the form

_ U"
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S (f if, (11.2)
L L ~ 2~ Tk f IT 2

k=1

where S is the spectral level of the {ut} sequence.

The spectral density shown in (11.2) is the AR spectrum

and it is this model that is fitted to an observed time series,

by simply estimating {i } from the time series. Several estimation

procedures for {c i have been discussed in the literature such

as the maximum likelihood, the least-squares [71 and Burg's

method based on forward and backward prediction error filtering

[8]. If the number of data samples is not very small,

the simplest and computationally most efficient estimates of

tI{ai l are the soli-tion of the Yule-Walker equations. These

-equations arise, simply by multiplying equation (II.1) by

xti, i=l,...L and taking the expectation of both sides, to

obtain a relation between the autocorrelation function of the

process {x. and the coefficients {ail. The Yule-Walker equations

are then given by:

R0A = p (.3)

where

r 1.. r L-l i r

r1

R 0 A and po =

rL- r 0 L rL

and where ri is the autocorrelation function of {xt I at the ith lag.

Furthermore, the power in u t I can be found by multiplying (If.1)

by x, and takinq the expectation as:



6

L
S1 = [r° - i tiri]AT , AT the sampling interval (II.4)

In practice {ai} and S1 are estimated from (11.3) and (II.4) based

on estimates of the autocorrelation function {ri}.

11.2 Spectral Estimation in the Presence of Noise and Interference

We now assume that the signal {x t } satisfies an L4
h order

AR model and therefore its spectrum can be estimated as in the

previous section. The problem of interest is the estimation of

the spectrum of the observed signal

Yt = xt + Wt + nt (11.5)

where it I is an AR(M) process and considered to be the inter-

ference and {n is a white noise sequence, with {n t , {xt and

{w tI mutually uncorrelated.

The resolution of the spectral estimators are now discussed in

the asymptotic case, that is, when the autocorrelation function

of {yt) is accurately known.

Let {x be described by (II.1) and {t be given by the

following autoregressive model

M
W= t bi Wt-i + vt

The z-spectrum of yt is then given by:

S 1  S 2
Sy(Z) + -i + S (11.6)D (z)D x(Z ) D (z)D (z n

where S1 and S2 are given by (II.4) using the appropriate auto-

correlation values for {xt I and {w t , Sn is the spectrum of nt and

.' . - --t



7

L M
D (z) = 1 - a.z , D (z 1 - Z b.z-x i=l 1 i=l 1

Putting (11.6) under a common denominator, it becomes obvious

that Sy (z) is the spectrum of an autoregressive moving average

process of orders L+M and L+M, i.e., AR(L+M)/MA(L+M). This is

a process with L+M zeros and L+M poles, where, from equation

(11.6), the numerator polynomial coefficients are related to

{ail, (bi} and Sn in an obvious manner.

It can be seen that the estimation of S y (z) using a purely

AR technique (all-pole) is equivalent to approximating the (L+M)

order moving average component by an AR one. This, theoretically

*would require an infinite order model. Finite order models of

order L, however, will estimate Sy(f) with good resolution, with

L depending on the various parameters of signal noise and inter-

ference, notably their relative power.

It is obvious now that whereas the resolution of Blackman

and Tukey type spectral estimations are only determined by the

window bandwidths in a predictable fashion, those of the AR and

- generally APMA estimators are very much data dependent, requirina

larger all-pole orders or ARMA modeling. Figure (II.1) shows the

spectrum of a noiseless AR signal. Figure (11.2) shows the

4calculated AR (from exact values of the autocorrelation function)

spectrum of the same signal in the presence of white noise, usinq

order L = 20. The degradation of spectral resolution is obvious.

A different approach to the demonstration of the dependence of

spectral resolution on the signal-to-noise ratio is to consider a

parallel resonator model for the measured signal. This is

discussed in the next section.
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11.3 Parallel Resonator Model

High resolution spectral estimation is normally used in

" situations where the signal has a "peaky" spectrum. Therefore,

one may postulate the signal model as the sum of the outputs of

M second-order resonators driven by white noise. This model,

as will be shown in the sequel, lends itself to an investigation

of the resolution degradation or bandwidth expansion as a function

of measurement noise.

Mathematically, the signal s(n) is modeled as 9,

M
s(n) Z s m(n)

m=l

where

Sm(n) = amlSm (n-l) + am2sm(n-2 ) + am 0 u(n) (11.7)

where u(n) is the driving noise of the signal generation process.

2It is assumed that u(n) is white with variance 02. The signal

ad model is shown in figure (11.3).

The transfer function of the siqnal generation process

is defined as

H(z) S(z) (11.8)

where S(z) and U(z) denote the z-transforms of the signal s(n)

- and the noise u(n) respectively. The transfer function Hm (Z) of

the m'th resonator is obtained by taking the z-transform of s m(n)

Sm (z) amlz 1 Sm (z) + a m2Z (z) + am 0 U(z)

Hence,

S (Z) a 0
H-)- m-1 -2 z)=-(11.9)m Uz 1-a amZ -a amZ

M ml



Z-1

- I-

FIGURE 11.3 THE SIGNAL MODEL
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The z-transform of the signal s(n) is then

M
S(z) = S m (z)

M
Z 1 U(z)Hm(z)

m=m

We can, therefore, express the transfer function for the

generation of s(n) as:

M M -1 -2
E lakO - al z -a mz

k= m=l
H~)m~k (II. 10) [""H(z) = S~

R (- - am2Z )

m=l

It can easily be seen that the order of the numerator polynomial

N(z) of the transfer function H(z) is 2M-2 while the order of

the denominator polynomial is 2M. H(z) is also recognized as

the transfer function of an autoregressive-moving average (ARMA)

model. Therefore, using the parallel resonator model is the same

as using an AP4A model where the difference in order between the

- autoregressive (AR) and moving average (MA) terms is two.

Thus, in the absence of noise, s(n) can accurately be modeled

as an ARMA process (or the output of a pole-zero filter). If s(n)

is corrupted by the uncorrelated white noise sequence w(n), the

z-power spectrum of the observation, y(n), is given by

S N(z) 2 G2 +a2

Sy(Z)= izl u  w

21N(z)i 2  + G2 D(z) 2

ID(z) 2

therefore, in the presence of noise, the model of y(n) is

equivalent to an ARMA (2M, 2M) process. This of course is
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consistent with the model derived in the preceding section

directly from the addition of AR processes and white noise.

11.4 Analysis of a Single Resonator

Some insight into the behavior of the parallel resonator

model in the presence of noise can be gained by examinina the

behavior of each resonator individually.

To simplify the analysis, we assume that the noise w(n) is

added equally to the output of each resonator. In the following

first the set of conditions which the parameters of each resonator

must satisfy for stability and resonance are discussed. The

relations between the parameters and the location of the poles

of a resonator are then derived. The effect of additive noise

on the poles is then examined. Finally, the perturbations of

the pole positions of the noisy resonator as a function of the

signal-to-noise ratio is analyzed.

The transfer function of the m'th resonator is given by

S (z)
H m(z) - m

am0
-i -2 (11.11)

1 - amlZ a m2'

am0

A (z)
m

The poles of Hm (z) must be complex conjugates for S m(n) to be a

narrow uand process. The locations of the poles are tie solution

of the quadratic equation

2 2zA(z) =z z am2  0 (11.12)

or
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2
a a 2+4ml ml + 4 am2

2

the condition for having complex conjugate poles is that

the discriminant must always be negative. That is,

2
a2+ 4a <0

ml m2

or
2a 1!

a ml (11.13)
m2 < 4

If equation (11.13) is satisfied, then the poles would be in

- polar coordinates,

J~m

zm me

where o is the distance from the origin of the unit circle to- m

location of the pole and wm is the frequency of resonance in

- radians/second.

The system is stable if zm and z are located within the

unit circle. The conditions for stability are given by the

Jury test

A (1) > 0m

A (-1) > 0

and 1 > am2l

Therefore, the parameters must satisfy

aml + am 2 <1

(11.14)
1am - am2 > -1

and !am2l < 1
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When equations (11.13) and (11.14) are satisfied, the impulse

response h m(n) is easily shown to be [10]

-1Shm (n) Z {H m(z)

n

0m sin(n+l) m
ma a sin L ,

Upon substituting for zm and zm in equation (11.12) and equating

A (z and A (z ), it follows easily that
Mm in ini

a = 2 rmcosw m

(11.15)
2

- 2 m

It has already been shown that, in the absence of noise,

the m'th resonator has 2 complex conjugate poles located within

the unit circle and 2 zeros located at the origin of the unit

circle (equation II.11). The effect of the addition of the white

noise is to move the zeros from the origin towards the poles.

When the noise dominates the signal, the zeros cancel the poles

resulting in a flat spectrum.

If we let y (n) be the output of the m'th noisy resonator, then

y (n) = S(n) + w(n)

(11.16)

= s (n) + w'(n)

where w' (n) is white with variance

2
2 2

e t w c

Then, the power spectrum of ym (n) is
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S (z) = a2 Hm(z) 
2  +  a2

YM m w

2 2"am a 2
mo u + 0 2 ,

Am (z) Am (z- w

22 2 -1
amoau + a wA (z)A (z

Am (z)A m(z-l)

If we let

a 2B  )B (z-l) a2 (12 + 2, Am (z)A (z-l) (11.17)
T) m w m u

we see that ym (n) may be modeled as the output of a rational

transfer function with B (z) as the numerator and A (z) as them m

denominator polynomials with n(n) as a white input. Then

B i(z) = 1 - bml z -  - bm2Z-2 and n(n) is a zero mean white sequence

- with variance a2. It is known [111 that a B (z) exists which has
n m

its roots on or within the unit circle. Equation (11.17) can be

written as

2 -l- b -22
a 2(1 - bml 1 - bm2 ) (1 - bmz - bmZ2)

(11.18)

a 2 a2 4 a2 (1 - a  -I -2H) a2am0 u ' ml z  -m2Z m2 ml

Upon expanding the above equation and equating terms cf equal

degree on both sides we get

22 2 2 2 2 2 2a m0 u + aw(+aml + am2) a) (1 + bMI1 + bm2 ) (a)

a 2, - 1) b a (bm2 1) (11.19) (b)amlw  m2 mlr n2

2 2
am 2Cw, a r bm2 (c)

4
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Equations (11.19) (b) and (c) imply

b aml (am2 - l)bm 2  (11.20)

ml a m 2 (bm 2 - 1)

Equations (11.19) (a) and (c) imply

2 2 2 2 2 2
amOau + w , + ml + m2 )  am2aw'

lb +b- (I1.21)I + b 2  + 2 bin2
ml m2 

or,

X + (I + a 2 +a 2 am2 + m2 _ am2
b2  M2 (11.22)1 + b 2 +b 2  bin2

ml m2

where
2 2a m 0 u

2

2If the noise variance ow, is small, then X >> 1. Equation (11.22)

imolies therefore that am-2 >> 1 or am>2 > b in which case
bm2m2 m2

equation (11.20) shows that b - 0. Then, for hiqh signal-

to-noise ratios, the zeros are located near the origin and their

presence does not affect the spectrum seriously. The exact

locations of the zeros is found by solving equations (11.20) and

(11.19) simultaneously.

11.5 Perturbations of Pole Positions

The addition of white noi- to a process given by a resonator

model tends to move the power spectral density peak and to broaden

the bandwidth. It has been seen in the previous section that this

is caused by the zeros being shifted from the origin towards the

poles. If we now model the observation again by an all-pole second-

order resonator model, the positions of the poles will have changed.



It is this perturbation which causes an expansion in the

estimated bandwidth. In the following this effect is examined.

The output of the m'th resonator is

Ym(n) = sre (n) + w' (n)

where s i(n) is a second-order process,

sin(n) = amlsm (n-i) + am2Sm (n-2) + a 0u(n)

Ym(n) may also be modeled as a second-order process,

YM Ym(n) = amlym(n-l) + am2ym (n-2) + a 0u(n).

In the absence of noise, am1 , am2 and amo are identical to

aml, am2 and am0 respectively. The autocorrelation function

- r (n) of the process ym (n) has been shown to be given by [10),

2 2 In_ 2r (n) =a p (Inlwm - m) + , (n)Ya Mcos an(o w

where,

2
2 1 ( ) 2cot w

+m P1 + 02
2 m (11.23)

1 - 02 1 - 2o cos2w + p4
m m m PM

1 - 2

Pm  arctan 2 C)t. (11.24)
1+ r2

m

and, m and wm are related to the parameters aml, am2 by

Pm =  m2
aml

= arccosm 2 ' am2

.. . . . .. ... .. J n a " l II l i | -IIM - ............. ...
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aml, am2 atisfy the Yule-Walker equations 
resultinq in

r~~n2 m2I)

ry(O)r (2) - r 2 (1)
m2 

(2 
am

r YM(0) - (1

Define the signal-to-noise 
ratio E as the power in the 

process

Sm(n) divided by 
the noise power, 

or

r (0) -2

2ow,

-rym(0)1126

ynd (2)1i(11.26)w

Substitute for r Y(0) , r y(1) and ry m (2) in equation (11.25)

it can be shown that 
(AppendiX A)

c2 2 + c1  + c  (IT.27)

M d2  + d 1  + d o0

where,
c2 = cos2(w m - m)  cos m c O s ( 2 wm  ea

2

c I =2cos 2 -W -T 3cos , cos(2wm -,m

2 - 2cosm cos(
2 ) - m)

c0 = cos (Wm - m in

d 2 =cos ( -(w) - coSmcos(2 wm - m)
2

dI0 = 2coS 2m + o) cos (- m c °+Cos(2m - m )

-d 1  2c0s2 m _ cOS 2 m(W _ m) + osco (2 Wm-

22_ 
m
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The distance pm from the origin of the unit circle to the

location of the pole is related to the 3 dB bandwidth Bm *in

Hz of the m'th resonator by [ 9

Bm
p2

Pm e

then,

B
m

Pm e 2

Pm Bm

e

where B is the 3 dB bandwidth in Hz of the noisy resonator.
m

Define the bandwidth expansion factor (BEF) as

'k n
Bm Pm

BEF - 1 + n (11.28)
B mZnp

Equation (11.27) shows that the BEF depends on the signal-to-

noise ratio (SNR), , pm and wr" Families of curves of the BEF

as a function of the SNR in the range -30 dB to +30 dB have been

generated for 3 different frequencies, .125 Hz, .166 HZ and .25 Hz.

They are shown in figures (11.4), (11.5) and (11.6) respectively.

It is seen from the graphs that, for the same SNR, the BEF is an

increasing function of pm and a decreasing function of wm" For
-I

small pm's, the resonator has a large bandwidth and adding white

noise (white noise has flat spectrum between -. 5 Hz and +.5 Hz)

does not affect the spectrum as much as for large Pm'S.

-- The above discussion demonstrates clearly that the asymptotic

resolution of an all-pole model depends in a non-linear fashion

on both the bandwidth and frequency of the noiseless signal.
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Therefore, in general an increase in the model order does not

uniformly improve the spectral estimates of all the spectral

peaks and the improvement is rather unpredictable. Curves such

as given in figures (11.4) - (11.6) may, however, be used as

a general guideline for the amount of degradation in a given

application.

.1



BEF 
22

8

7

6

5 rm .95

rm 08

rm =0.6

- 3

rm = 0.4

2

I

-30 -20 -10 0 10 20 30 SNR (dI
Wm 0I5H
21-r=0.15Hz

FIGURE Il.4 BANDWIDTH 'EXPANSION FACTOR VERSUS SIGNAL-TO-NOISE RATIO FOR fm.125



BEF 23

- 7

6

r m .95

ldi 3rm .6

3 m .

-30 -20 -10 0 10 20 30 SNR (d

W m
=0.1 67 Hz

FIGURE 11.5 BANDWIDTH EXPANSION FACTOR VERSUS SIGNAL-TO- NOISE RATIO FOR fm .167



-BEF 
2

8

- 7

* 6

5

4

3

2

-30 -20 -10 0 10 20 30 SNR(dB)

iir=0. 25 Hz

FIGURE r.s BANDWIDTH EXPANSION FACTOR VERSUS SIGNAL- TO-NOISE RATIO FOR f9 25m2



w --

257

III. ORDER DETERMINATION FOR AR MODELS

The previous chapter demonstrated the need for increased

-- order of an AR spectral estimator to improve resolution in the

presence of noise, resulting in a larger variance for the

estimates. In fact, the trade-off between the bias (or

resolution) and variance of a spectral estimator is the central

issue in spectral estimation by any method. For the traditional

(Blackman and Tukey type) spectral estimators, this trade-off

is reflected in the choice of the spectral window type and the

maximum lag of autocorrelation function used. This subject,

referred to as window carpentering, is discussed in detail by

Jenkins and Watts [12], and is straightforward because resolution

is well-defined in terms of the spectral window bandwidth.

With the popularity of data adaptive (notably the auto-

-regressive (AR)) spectral estimation methods, similar resolution-

variance trade-offs are in order. Specifically, well-defined

methods are needed to determine the order of the (AR) spectral

estimator for a given data sample. Furthermore for practical

applications, these methods need to be on-line and as much as

possible objective in nature. This problem is complicated, however,

due to the data dependent nature of the resolution of the AR spectral

estimator as shown before (e.g., no well-defined window bandwidth).

Therefore, the question of order determination for the spectral

estimator seems to be best posed as a procedure for obtaining a

compromise between the AR model fit and the variance of the

estimated AR parameters as a function of the model order.

Akaike 113,14] and Parzen [15] have recently introduced some

methods for automatic determination of orders of autoregressive

-- 6.4-- K
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processes. One method, based on Akaike's Information Criterion

(AIC), has gained special popularity. In this report, we follow

the derivations on which AIC is based, introduce appropriate

modifications to account for practical estimation procedures and

derive a new information criterion designated the Conditional

AIC (CAIC). We then present the results of a number of numerical

simulations that compare the performances of AIC and CAIC for

moder order identification and spectral estimation.

III.1 Akaike's Information Criterion

Akaike derived his information criterion, AIC, as an

estimate of the asymptotic relative goodness of fit of the model

to the observation. Although his derivations were based on

information theoretic arguments, the resulting parameters were

the same as the maximum likelihood estimates. In this section

we review the steps involved in obtaining AIC as they pertain

to the derivation of the new criterion. We assume the time series

to be described by

L
x t = aixt_ i + ut, t=O,...N (III.1)

i=l

X_L,... ,x 0  = 0

where ut is zero-mean white and Gaussian and L is to be determined.

Through asymptotic arguments, Akaike defines an information

criterion, related to the maximum likelihood of the estimates of

ai ail as:

AIC(A) = (-2)ln (maximum likelihood)

-+ N 2 (111.2)
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where E denotes asymptotic expectation, A and A are L x 1 vectors

of the coefficients ai and their estimates ai The practical

AIC which is related to the full-information likelihood function

of a Gaussian process is then given by

AIC(L) = N ln (MLE of innovation variance) + 2L (111.3)

and the order L is chosen that minimizes AIC(L).

111.2 The New Criterion

Since the exact maximum likelih. d (full information

maximum-likelihood) estimates are generally not available, the

conditional MLE, one based on Yule-Walker equations or Burg's -

algorithm, of the innovation variance are normally used in (111.3).

We propose using the conditional maximum likelihood (CML) function

in (111.2). This function is based exactly on the available data

and we believe is a more sensitive indicator of the behavior of

the estimates used in practice. Thus, in the following, the CML

estimate of A and its covariance function are considered, in order

to obtain tractable expressions for (111.2).

The conditional (partial information) likelihood function

for the time series in (III.1) is given by:

T

L(Aa 2, xif--Ix 1 ex -CDC (111.4)
- - u ,x,. L) N-L exp

(2rra u2 )2 2ou

2.

where au  is the variance of the innovation sequence ut ,

cT =l,-al ,-a2,.. .,_aL and

SN (111.5)

Dij =ji k=L+l Xk-i+l xk-j+l
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'Furthermore, the CML estimate of a 2is given by:u

2 =
= c D /(N-L) (111.6)

and a lower bound for the variance of the estimates of ai follows

from the Fisher's information matrix to be

1 2 2ii
var[ai -> A (111.7)

where Ai i is the diagonal element of the inverse of the (L + l)-

sample covariance matrix of xt. It is now shown that

2 Ai4 = 1 (111.8)U -

The innovations variance, o u , is given by thi Yule-Walker

relation as

2 =r = [r 1 1 (111.9)dU 0 r °  r•. . rL]A

where A L+ is the L+l-st order covariance matrix given by:

r .... rL
-r 1  r L-1

The first diagonal element of the inverse of A L+l A is then

given by:

Formula (111.9) can be rewritten as



29/r'
rOIAL - [rl...rL]SL

r222

U

where SL is the adjoint of A given by

I~o i "'"(-I)L-LI

-'__L L=

(-i) L-IL-l Wo

and i. Minor of element ri in AL .

- Comparing (III.10) and (III.11) it is obvious that we need to show

L+l( = Numerator in (III.11)

OW From the form of A L+ 1 we have

L
roLI + (-l)r1  E ri(-l)ilu-- ~i=l ii

2 L2 ~ - i-I-- +(-1) i= ri-i fli_2f+..

i i=

But the numerator in (111.11) is also after multiplying the matrices:

L L
NuL = rOIALLI E= rir ( - -

-- i=
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Resulting in

2 1 (111.13)
i U iA

as required.

We now proceed to define an expression for (111.2) hased on

the CML estimates of A and a%2 The expression for the CML given

in (III.4) is now substituted in (111.2) for the maximum likelihood

and using (111.8) for the second term in (111.2) and (N - L) for

N we have:

^ 2
CAIC(L) = (N - L)ln(2r2 ) + ( - I)L (111.14)

The factor a > 1 is included to account for the asymptotic nature

- of the criterion and the fact that (111.8) is a lower bound for

the variance of a A similar parameter was also suggested for

AIC [161 and in [14] Akaike discusses a possible approach for

choosing a. Since CAIC(L) as given by (III.4) is dependent on

the variance of xt, the test is standardized by introducing a

normalized innovation variance so that

CAIC(L) = (N - L)ln /(var xt) ]

(111.15)
+ (a - 1)L

Thus CAIC(0) = 0. The factor a is chosen to give more or less

weight to the error in the estimation of the parameters. In

other words, resolution can be increased at the expense of the

variance of the estimates by decreasing a. We have found,

empirically, values of 3.5-4 to give the most stable and reasonable

indication of the order.

i i I 6%| I i - l- i I ... ..
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111.3 Simulation Results

We have tested the performance of CAIC relative to AIC on

a number of time series models reported previously. The data

included normal as well as uniform distributions. The estimates

- were based on CML (loast-square) and Yule-Walker methods. In

the great majority of cases, CAIC performed as well or superior

to AIC. Examples of these can be found in [17]. Some estimated

spectra based on orders determined by AIC and CAIC are also shown

in figures (III1.) - (111.3). Yule-Walker equations with auto-

correlation function estimates given by

N-i
N _ j+i

were used. The example shown in Figure (III.1) indicates the

relative stability of CAIC. Figure (111.2) shows that the model

order chosen by AIC results in spurious peaks, while giving

higher peak resolution than the CAIC based one. Figure (111.3)

shows that an increase in white noise level increased the AIC

order to the point that spurious spectral peaks became pronounced

while CAIC remained nearly the same, showing the relative stability

of CAIC.

A

mom

-l d N : + n •- .. . . ..
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IV. SOME SUBOPTIMUM ARMA SPECTRAL ESTIMATORS

As shown in Chapter II, the presence of additive noise on

the observations of an AR process implies that they are an

ARMA process. A popular approach to circumvent the degradation,

wrought by this model change, of the AR spectral estimate is

to derive spectral estimators based on the ARMA model. Box

- and Jenkins ( 7 1 among others, provide an algorithm to give a

close approximation to the maximum likelihood (ML) estimate of

the ARMA parameters, assuming Gaussian observations. This is

considered th- optimum estimator in view of the desirable

properties of aaximuM likelihood [18]. But optimum ,timators

-_have computational disadvantages, described in the next chapter,

which have compelled many rescarchers to consider alternative

- criteria that yield spectral estimators with areater computational

efficiency. There is presently considerable activity in this

area, appropriately termed suboptimum AR4A spectral estimation.

In this chapter a new suboptimum scheme is reported for

estimating the power spectral density (PSD) of an ARMA process

-- of known orders. After a preliminary data reduction, this scheme,

called the least squares (LS) estimator, minimizes a sum of squared

quadratic functions of the AR coefficients using a nonlinear least

squares algorithm. The poles of the estimated PSD are found from

the minimizing AR coefficients, and zeros are found from quadratic

functions of these coefficients. Note that these results have

been published [19].

The general idea of least squares fitting the ARMA parameters

is not new, and various other approaches have been suggested
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(see, e.g., [7] and [20]). The scheme discussed here is,

however, analogous to a minimum mean-squared error estimation

of the parameters appearing in the estimator discussed in [21]

and [22]. A modification of the latter estimator that is based

on the modified Yule-Walker equations (the MYW estimator) is

also presented, in which the problem of negative excursions of

the estimated PSD is corrected by tapering the estimated moving-

average autocorrelation function. Examples are shown that compare

the performance of these ad hoc techniques to the approximate

maximum likelihood method of Box and Jenkins.

IV.1 The Spectrum of an ARIIA Process

Assume that we observe xt,t=l,...,N where xt is stationary

and Gaussian of mean zero, and that xt fits an ARMA (L,M) model.

Then we can write

L
x t  Z aixt_ 1 = ut  (IV.l)

i=l

where ai are the AR parameters for the AR4A model and ut is the1I
MA residual sequence given by

M
ut = E - E bi (IV. 2)

i=l ti

where bi are the MA parameters and et is a zero-mean uncorrelated

2normal sequence of variance aC" DefineT|
AT = (l,-a I ....- aL].

Then the PSD of xt is given by

S (z) = Su(z) ATZL12 (IV.3)

where ZT = [l'z 1 ,...z k1, z being the z-transform operatork
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z eJ, and where S (z) is the PSD of ut . Writing

S (z) 2[- + i(z1 + z) + + - + zM) (IV.4)

u U 2

we can express the 
pSD of ut in terms of its variance 

2 and

M normalized autocorrelat 
ion coefficients . T

normality of ut gives us 
the conditional 

expectation [23, PP*

218-225]

E(uut_ i ) = iuti(IV.5

and, in general, 
3i is the best linear 

predictor of ut qiven

U in the minimum mean-square 
error (mmse) sense.

IV.2 The LS Estimator

A least squares 
estimate of i is obtained 

by minimizinc

Si given by

N 2

S i  E (u t-i
t=L+i+l

N ( 3 .ATx 2
= (AX t, t-L] 2

-- t=L+i+l

where

T > .

The derivative with 
respect to 9j vanishes for

AT R iA  
(IV.6)

2A T RiA

where
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N
-R= [ X tL]XT

R t= L+i [ t,t-L (t-i,t-L-i]

+(X [ttL] xT [tTi,tLi)

N TRoi tI~~ t-i,t-L-i]X [t-i,t-L-i] ]

That i minimizes Si is seen by takinq the second derivative

2  2ATRA N T 22 Si =  = 2 Z (A X[ti,tiL])2 > 0. (IV.7)
dB i  t=L+i+l

This also establishes a nonzero denominator for Ri in (IV.6).
41

To get an estimate of the variance of u we use the sample

moment

N N"2=A2=T xT

(N-L) u  Z u 2 A t,t-L] X t,t-L] A
t=L+l t=L+l

-ATR A (IV.8 )
00

where R is given in (IV.6).

The fact that ut is MA(M) implies that ji = 0 for i > M, so

one method to fit the vector A to the data is to solve the set of

equations 5i = 0, i = M + 1, ... ,M + L from (IV.6). Recognizinq

that the denominators are nonzero, we can instead solve the

simpler system

ATR.A = 0, i = M + 1, ... ,M + L. (IV.9)i

The locus of solutions for each of the above equations is a quadric

surface [24, pp. 287-294], and there is no solution to the systern

if the surfaces do not jointly intersect at least one point. In

order to obtain a value for A whether or not there is a common

intersection, we choose A to minimize Q given by
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M+L T 2
Q = E (A RIA) (IV.10)

i=M+l

The value of Q is zero at any point of intersection for all the

surfaces in (IV.9). The vector A obtained via minimization of Q

will henceforth be referred to as the LS estimate. Using the

LS estimate, we next find i' i=l, ... M usinq (IV.6) and u

using (IV.8) and substitute these values in (IV.4) and (IV.3) to

get an estimate of the PSD of xt, henceforth termed the LS

spectral estimate.

IV.3 The MYW Spectral Estimator

The rational spectral estimator in [ ] (the MYW estimator)

produces A to solve the modified Yule-Walker equations, which

-- for an ARMA (L,M) process are

CM+IA 0=0 (IV.ll)

where

C k = jjcj k = jjcx(k+i-j) j'

i=l, -. ,L; j=l, ... .L+l,

and where c x(i) is an estimate of the ith lag autocorrelation of

xt , for example,

1 N-icx(i) - xtxt+i" (IV.12)
t=l

Then estimates of the autocorrelation function r i) of u t are

- found by

rui) , i=Ol, ... ,M (IV.13)
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and the estimated PSD is

W S x (z ) = [r u(0) + ru(1)(z-l+z) +...+ ru(M)(z- + zM) H

(IV.14)

Note that the LS and MYW estimates of A are asymptotically

equivalent. To see this, observe that

p lim(N-L-k) Rk = Ak + AkT

N-k 

k

(denotes convergence in probability) [25] where Ak incorporates

the mth lag autocorrelation rx (M) of xt according to

= r (k+i-j),

i=l .... L+l, j=l, . . +I,

and that p limN- Ck = JAijk , i=l, ... ,L; j=l, ... ,L+l. The

solution to (IV.ll) obtained by replacing CM+l by its limiting value

Malso solves (IV.9) with (N-L-k)-I1 RI replaced bv its limitina value.

There is one other solution to this asymptotic form of (IV.9),

but we conjecture that it is outside the stationary region for A.

The spectral estimate given by (IV.14) is not guaranteed to

be a nonnegative function of z = e j 2 7Tf for fc(0,1/2]. For instance,

if observations consist of two additive narrow-band AR(2) sianals

having center frequencies in close proximity, the true z-spectrum

consists of two closely spaced poles just inside the unit circle

and a zero just inside the unit circle and between the poles in

frequency. An error in estimating the numerator polynomial in

(IV.14) can cause what should be a near-zero positive value at

the bottom of the trough in the frequency response of the numerator

to be a near-zero negative value, thus making the PSD estimate
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negative in a region near the peak. An effective counter is

to reduce the depth of the trough by multiplying the r u(i) by a
uU

taper which slightly reduces the frequency resolution of the

estimated numerator. Use of the linear taper

T. = 1 - i/K, i=0,1, ... M, K > M (IV.15)i

has been successful in eliminating negative excursions of the

PSD estimate when used to produce r (i)t according to
u

-' tr u(i)T = Tr u(i), i=0, ... ,M.

Another strategy, used in [20], is to replace the numerator in

(IV.14) by the periodogram of ut. For short data records, however,

the periodogram often cannot adequately represent the movinq

average spectrum, resulting in inaccurate indication of the power

under the peaks of the ARMA spectrum. In tests of the MYW

estimator, all negative excursions were eliminated for K >> M.

SNo necative excursions were noted for the LS algorithm, but the

existence of a guarantee has not been investigated. It is

emphasized that the use of the numerator taper does not sacrifice

the resolution of the ARMA spectral estimates. This is due to

the fact that resolution is mainly determined by the poles and

the MA spectra of interest are relatively smooth.

IV.4 Simulation Results

Figure (IV.l) shows LS estimates of the PSD of 20 realizations

of x t = wt + Yt + 0.5 n t where w t = 0.4 wt_ 1 - 0.93 wt- 2 + Ct and

4Yt= -0.5Yt- 1 -0.93 Yt-2 + nt and where Et' , and nt are

mutually independent i.i.d. Gaussian of mean zero and unit variance.

Q in (IV.10) is minimized using the conjugate gradient technique [26]
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with A starting at the origin. The combined effect of the plots

is to suggest a bias in the estimator which smears the spectra.

In Fig. (IV.2) the tapered MYW estimate is depicted for the same

set of realizations. K in (IV.15) is set to the minimum value

that succeeds in eliminating all negative excursions of the

spectral estimate. In this set, the untapered MYW estimates of

seven realizations went negative, and K = 34. Figure (IV.3) shows

the unconditional least squares Box and Jenkins estimate for the

same set of realizations. It is apparent that the performance

of the MYW estimator is nearly as good as that of the Box and

Jenkins estimator for most realizations. The disturbing tendency

of the MYW estimator to produce an occasional aberrant estimate

is also exhibited in the figure.

The simulations provide evidence that the computational

simplification, compared to the optimum schemes, provided by

data reduction in the LS estimator is accomplished at the expense

of a substantial tradeoff in statistical efficiency. The results

- also suggest that the MYW estimator has higher statistical efficiency

than the LS estimates. These observations, coupled with the high

computational efficiency of the former, lead us to conclude that

the MYW estimator is the superior of the two suboptimum spectral

estimators considered.
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V. STATISTICAL CLASSIFICATION OF SOME ARMA SPECTRAL ESTIMATORS

Many of the spectral estimates appearing in the engineering

and statistics literature over the last two decades fall into

one of two classes. In the minimal sufficient (MS) class, the

AR and MA parameters are adjusted simultaneously to give a least

sqaares or approximately least squares fit to the observed data

vector. The name "minimal sufficient" acknowledges that no

reduction of the data is a sufficient statistic for stationary

Gaussian time series having zeros in the power spectral density

(PSD) [31]. The resulting estimates are approximately maximum

likelihood (ML) for Gaussian data. In the sequel, it is assumed

that the data is a Gaussian time series, and the ML ARMA

parameter estimate is referred to as optimum, for reasons

discussed in Chapter IV. Thus, optimum solutions are contained

in the MS class. The equations for the least squares solution

are highly nonlinear, and thus estimators in this class are

typified by nonlinear opt±;-ization algorithms and other iterative

approaches and their concomitant pitfalls, i.e., nonconvergence

-or convergence to local rather than global extrema, the need for

preliminary ARMA parameter estimates to start the iterations,

and large computer memory and time requirements. The auto-

correlation function -iass is composed of estimators which

utilize a fixed, finite number of lags of the sample ACF. The

estimation equations are usually linear or quadratic, and often

the AR parameters are estimated alone, after which estimates

either of the MA parameters or of some function related to the

PSD of the MA residuals are computed using the AR estimates. All

-- -- ' .. . .. %' i iii i I
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of the estimators in this class are suboptimum, the truncated

sample ACF being a data reduction. Further, an optimum fitting

requires that all parameters be adjusted simultaneously.

Suboptimality, then, is the price paid for the gains in

computational simplification and relaxed memory requirements

of estimators in this class.

In its emphasis on computational efficiency, the literature

has left largely unanswered questions regarding the statistical

efficiency of estimators in the ACF class. We provide in this

chapter an evaluation of Fisher's information matrix for the

truncated sample ACF of AR4A processes. Only the asymptotic

(infinite observation record, i.e., N x) case is treated to

make the analysis tractable, and the magnitude and angle of poles

and zeros of the PSD are taken as parameters of interest. The

results will yield asymptotic bounds on the statistical efficiency

of any estimator in the ACF class.

V.1 Classification of Some ARMA Spectral Estimators

In keeping with the goal of obtaining asymptotic results,

the estimators to be discussed are classified according to the

limiting form that the statistic on which they are based takes

as N approaches infinity. The MS class includes the methods of

Tretter and Steiglitz [32], Hannan (33], Akaike (34], Konvalinka

and Matousek [35], and Box and Jenkins (7, pp. 231-235]. The

methods of Walker (36], Hsia and Landgrebe [37], Graupe,

Krause and Moore [38], Sakai and Arase (39], Satorius and Alexander

[40), Ka,.-h [21], Kinkel et al. (22], and Bruzzone and Kaveh [19]

are incluaed in the ACF class. Cadzow's method [20] is based on

a reduction of nearly all N lags of the sample ACF and hence does
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not fit into either class. ve have observed a tendency toward

large frequency errors in Cadzow's method as well as an

exaggeration of the sharpness of spectral peaks while requiring

nearly as much computer time and memory as methods in the MS

-class. These facts, in conjunction with the suboptimality of

the method as a result of the use of a data reduction as well

as non-simultaneous determination of the AR and MA parameters,

lead us to dismiss Cadzow's method from further analysis. A

number of estimators, e.g., [36], which are based on the sample

ACF yet claim to be asymptotically efficient from a subclass of

the ACF class. There is no discrepancy here, however, in that

efficiency obtains in the limit as first the number of observations,

then the number of sample ACF lags, approach infinity. In

practice we are not at liberty to extend the estimators in su'Th

fashion, so these estimators are analyzed assuming a finite

truncation of the sample ACF.

Looking more closely at the ACF class, we see that [37],

[21], [22], [40] and [19] first compute an estimate of the AR

parameters, and then use these to estimate some function related

to the MA parameters. Thus, the statistical efficiency of these

estimators is determined largely by the efficiency of the AR

*parameter estimates in the first stage. The AR parameters

determine the pole locations of the ARMA PSD, and consequently

they have far greater influence on its shape than do the MA

parameters in the problem of high resolution spectra. It is

clear that the asymptotic efficiency with respect to only the

estimated pole locations of various estimators is a meaningful

criterion by which to judge them. For example, [37], [21], [221,



47

[40] and any method based on modifying the numerator portion

of their estimated PSD's (as in Kay (413) are equivalent by

Mthis criterion, a result that agrees with our experience.

The two popular sample ACF's

C W xtxt+ i ; i=, .... ,k
t=l

and (V.1)

N-i
r(i) txt+ i

t=l

are asymptotically equivalent for finite k. We take as the

statistic of interest Ck k C ( ),c(k 1 ) (k Hl[kilk 2 ]  = [C~ I ) ,x l ) I ... C k 2 )

kI < k2. This allows us to take into account the effect of not

using low-lag ACF values, as is the case in the five estimators

listed in the previous paragraph, wherein cx (o) is not used to

estimate the AR parameters. The asymptotic Fisher's information

matrix is derived for any subset of the poles and zeros by

appropriate choice of the parameter vector.

lie mention briefly the work of Gersch [42], who provides

the asymptotic covariance matrix of the AR parameter estimates

gotten from the modified Yule-Walker operations, and that of

,Sakai and Tokumaru [47], who give the covariance of the estimated

power spectrum gotten from using (21] or (221 (these are

equivalent). Little else has been done to analyze the suboptimum

ARMA spectral estimators, and while these results are useful,

they lack the general applicability of the analysis we now undertake.
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V.2 Evaluation of Fisher's Information Matrix

We begin by evaluating the asymptotic covariance matrix of

the sample ACF for an ARMA(L,M) process, where we assume L > 0,

using the notation and assumptions of Chapter IV. It is known

that [12, p. 1811, for a stationary time series xt,

im cov[c X(k),cx ()] E Ny(i)y(i+Z-k)+(i+Z)(i-k) (V.2)

where y =i) E(x x t+). The ACF of an ARMA(L,M) process is

recursive beginning with lag M. Starting values are qiven by

the appropriate system below (see J441),

-a I  -a 2 , .. -aLl1 -aL D

-a1 I1-a 2  -a 3  -a. L 0 Y (l) D

-a 2  -aI-a 3  1-a 4  ... 0 0 y(2) 2D L > M 0

(V.3a)
y (L-l-a L -aL_ -aL_ .. -a I  1 y(L

L -L-1 L-2 -a1 1 yL L)

i a . aL -aL 0 0 0 y(0)

-a 1 -a a . Dl

1 a 2  -a3 ••• aL 0 0 0 ... 0 y(1)

-a 2  -al-a 3  1-a, 4 .. 0 0 0 0 ... 0 (2) D

-a - ~ -a~ -y . (L-1) 2
L L I  L-2 a. 1 1 0 0 ... 0 y(L) t D M>L-

o -a L -a L _ .. -a 2  -a I  L I

0 -a .. -a -a -a 0I ... 0 y(L+2) D
LL- 32 L+12

0 0 0 0 0 0 ... 1 (M)}

(V. 3b)
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where

2 M j-i 2
D i  0 E Z Z (a -b )Bjdet(cji_ £-) + Bi , (V.4)

with B = 1, Bi 
= b i for i=l,...,M, Bi  0 for i > M, ai = 0 for

i > L, and E = 0 for j < i. Also,
i

1 1 a2 .. ak

-1 a 1 ... ak- 1

= 0 -1 ak- 2  k > 1 (V.5)
k=

0 0 ... a I

1k = 0

where a = 0 for i > L. For M > 1 and L > 1 we extend the vector

of starting values to lag M+L-1 usino the AR recursion

L
y(k) =  aiy(k-i). (V.6)

i=l

Although this recursion can be used to extend the ACF arbitrarily

far, the infinite sums in (V.2) are simplified by expressing the

ACF in terms of its poles, i.e.,

L i-M
y(i) E N. G i > M (V.7)

j=l J .

where the G are zeros of the characteristic equationJ

L
1- a.z =0 , (V.8)i=l 3-
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and X. is the residue of G. Usinq the extended ACF, we find

the X. by solving

1 1 ... 1 X Y(M)

G G2 ... GL X 2 (M+I)

(V.9)

G L-l L- 1 ... G L-1 X N(M+L-1)
1 2  L LG

The infinite sums in (V.2) can be expressed in terms of one-sided

infinite sums, as

2 -y2 (i) + Y 2(0) 0
i--1

j-1
CO~~ij 2 iyji 1

E (i) (i+j) 2 Y (i)F(i+j) + ; (i) (i-i) j odd (V.10)
i=l

- _ -1
[ o 2

2 2 Ey(i)y(i+j) + (i + ; eve~i=0 i=l

and the infinite sums can be separated into terms of the ACF

directly influenced bv the MA parameters and those followina the

-- recursive form (V.7), as

00 oo M- i0
2 y(i)y(i+j) 2 y(i)y(i+j) + 2 y(i)y(i+j)

i=0 i=0 i=M

But, from (V.7),

0 L L i-M. i+j-M
2 ' (i) y(i+j) E X m n G m G

i=M i=M m=l n=l m n m n

~L L jL L -M iL L G
Ai i j = 7 E \ \ n = ,

m=l n=l m n i=M Gm n - m n 1-G G j='1'2...,
m=l n=l m n

(V.11)
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where the assumption that all poles are inside the unit circle

allows the interchange of summation and guarantees convergence

to the closed form result.

Substituting (V.11) into (V.10), we have

2 L L Xxn

(0) + 2 E I-G G ; j=0
m=l n=l m n

j-1
CO M-1 2

y(i)y(i+j) = 2 (i)Y(i+j) + E Y(i)y(i) + (V.12)
i=-00 i=0 i=l

L L Gnj
- 2 E E x m x j odd

m=1 n n1 m-G n

- "M -ii 2

2 y (i)-Y(i+j) + 2 - (i)y(j-i)] +
Ii=o i0l

L L Gn
'Y (T) + 2 E E mxn -i G j even.

m=l n=l m n

Finally, we note that (V.2) can be rewritten

Zim cov(c (k),c Z y(i) y(i+Z-k)+-y(i) y(i- Z-k), (V.13)
,N-0 x N.

so that

z q



M-1 2 L L rx ;k=
2 2 2 i + 2 E - M

2m 14- 1(y(i+2 Z)+

7 -Y(i)-y(2t-i) + E Z xMXn i--G Gn

N 2 ( )(- ' k > 0

- r14i ~ + (v.14)

OV [c (k) ,c~(f M IY. y

i-k-i

2d y (i).y(Z+k-') + z N-(ZYi +

L L G k+G2 n ; i-k -

-~~ rn n= rnf

2 My l(i) (,Y(j++k)±YUj+Z-k)) +

Z+k -12-k1

+ E (~(/i
jj=i

L G i-ik iG -k +

zln rn n G 1 mn)

i( 2(ik 2 (';-k)) Qk 2 4,6'G-

IB-M-
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where terms used in the finite sums are obtained using (V.6).

Note that the above assumes k > k, 9 > 0 and k > 0. This

presents no problem in evaluating the covariance matrix, for

Cx(k) = cx (-k) implies that negative values of Z and k are not

needed, and the toeplitz form of the covariance matrix implies

that cov[c (k),c (z)] = cov[cxM),cx (k)]. The case L = 0 is

handled by (V.3b) with (V.4) and (V.5). (V.10) is modified to

M 22
2 Z y 2(i) + Y 2(0) ; j 0

i=l

I y(i)y(i+j) = 2 y(i)yki+j) + E y(i)y(j-i) ; j odd (V.15)4 io 0i=l

2 -1 2

2 __ y(i)y(i+j) + E Y(i)-Y(j- ) T ; j even.
i=O i--

Then, using (V.2), we have, for L = 0,

V4
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S 2 ci) +Y(0j Z~k=O

2 m 2 M

Zi~ y (i) + E -y(i)y(i+2k) +

9,Z y(i)y(2k-i) +- L(-y2i)+y2(Z)); Z~k>O

-N ; y(i) (y(i+k+k)+-y~i+Z-k)) +

2
Qim cov~c x(k) ,c (c) I y (i) y ( -k- i) + (W.16)

Z+k-1
2

i~~1

-1 2

Z y Wh(i+Z(+k) -y i+Z +
i=1 =

1(k 2 Zkk2 1-
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The probability density function (p.d.f.) of the sample ACF

of an ARMA process is asymptotically multivariate Gaussian

If we denote

rTkl 2 ]  = [7 (kI ) ,T (kl+l),...,-y(k k >  k ,

and

A (kklk lim E(C(k 1 ( [k I )(C[kl,k2 I- [,k 2 ] T (V.17)

then tho asymptotic p.d.f. of C [klk2 ] is given by

k2-k 12 1 -2

lim f(C k IG,P,oE 2) (2 ) 2 JA k2k] exp- 1(Cc[kj k]

N- (kl 2kl k2~ 2) T2- 2

"k l ) [kirk 2]( [kl,k 2]- [kilk 2] (V. 18)

where G represents the vector of poles and P the vector of zeros.

Fisher's information matrix is given by [451 (denote lim f = f )

(e - nf(C IG,P o 2) } (V.19)Ice o  a -E 0{ [a0 [k1?k 2 ] 1

We take °T [ .. ,IG 1. L/2 . .. '

where the assumption that poles and zeros occur in complex conjugate

pairs halves the size of the parameter vector. The i are angles of

the pole pairs, and zeros P. solve

-1 -M1 - bl .. b MZ 0 ,(V.20)

each pair having angle i

i Ai i i i: d i | ' l i ] .. . -: . .
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We have been unable to obtain the derivatives in (V.19)

due to the complicated nature of the p.d.f., and, even if they

were available, it is doubtful that the expectation would yield

to a concise solution. Numerical methods are not well developed

for multiple integrals, and these have the added complication

of being improper, so we consider Monte Carlo methods. The

most basic approach is to generate several thousand pcints

(C[kl1 k2]) i distributed according to (V.18) and to approximate

the expectation by a sample mean

C(o) 1z {[VU Qnf((C[k ,k2])ilG#P?%f2)] =

i=l( 0o o 1'

I2 T
f4 [- [k irk2 i lG' c|

((C 2 G P o_) (V.21)

where is the number of points generated. The matrix of second

partials is computed using standard numerical routines, i.e.,
-4

we make small perturbations in a . For each new e0 , we recompute

poles Gi,i=l,...,L and zeros Pi,i=l,...,M, which occur in conjuqate

pairs. Then, we obtain the corresponding vectors A and B by solving

(1-G Z-1I) (1-G~ z - l I. (1-G z - l 1 1-alz-1 -...- a z-

(V.22)
-l -l 1 i-~ --1 -Mb

(l-P z )(-P 2 z ... (1-P ) = 1b z -... b M z

from which we proceed to the calculation of y(i) and eventually

A[krk 2]. The sum in (V.21) is evaluated for the several perturba-

tions of e0 needed in numerical evaluation of the matrix of second

partials, using the same set { (C[klrk2 )i } each time. If we are

,, u u I | l l i nf - .. ... . .. . .. . ... ...... ..i
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interested in the information with respect only to poles, we

use the reduced parameter vector 6 0 T= {GII' IGPL/21'-i

We then estimate the asymptotic Cramer-Rao bound on the error

covariance matrix for 60 (note that we consider only the class of

asymptotically unbiased estimators) as

E{U 0-6o)6 (e0 a ) T i1 %( (V.23)

where the matrix ordering is

R > Q y TRy > y Toy

for R and Q square of dimension (say) K and y any vector of

dimension K.

Questions regarding the details of the Monte Carlo simulation

are under investigation. Next, we will consider the special

case of AR time series in white noise of variance u 2 The
effect of this noise on the information in C is evaluated

[Ekl,k 2 ]

~2
by replacing y(O) obtained from (V.3a) by '(0) = y(0) + n

This will give a quantitative measure of the effect of the model-

change phenomenon in the presence of noise. Studies of more general

time series and noise will follow.
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VI. SPECTRAL ESTIMATION FOR NOISY COMPLEX SINUSOIDS

High resolution spectral estimation has found special

popularity in applications involving real or complex sinusoidal

signals. Examples of these applications include radar doppler

processing, and radar or other sensor array processing for

improved angular resolution 127]. A method that has found

special appeal in these applications is the maximum entropy

method of spectral analysis (MEM) introduced by Burg t 8 1.

However, there have been several disturbing problems with this

method when applied to sinusoids, notably, frequency errors

depending on the sinusoidal components' phases and line splitting

under high order estimates and large signal-to-noise ratios.

We have considered the frequency error problem and have

investigated a modification to Burg's original alaorithm,

which we denote the tapered Burg algorithm. The tapered Burq

technique is a direct result of considering a weiqhted least-

squares fit to the parameters of the all-pole model, subject

to Levinson's recursion constraint, in place of the usual

unweighted least-squares fit. The algorithmic consequence

of this approach is the inclusion of an appropriate taper

in the calculation of the partial-correlation coefficients in

the usual Burg algorithm. Based on the expression for the

frequency error in the spectral estimate of a sinusoid, an

optimum taper is derived. The performance of this optimum taper

is then compared with those of the rectangular (untapered Burg)

and Hamming tapers. It appears that this taper makes MEM spectral

estimates of sinusoids using Burg's technique more robust, without

sacrificing its resolution.
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In the popular derivation the MEM coefficients define a

predication error filter (PEF) and are chosen so as to minimize

*the average of the forward and backward prediction residual

energies subject to Levinson's recursion constraint. In [ 8 1

Burg generalized this derivation by minimizing a weighted

average of the residual energies. This was presumably done to

allow the analyst to reflect his or her confidence in possibly

disjoint data records. For contiguous data, it did not appear

that any weighting of the average residuals was needed.

Therefore, the popular MEM spectral estimate has been that of

Burg's original suggestion of using a rectangular (uniform)

taper. Recently, Swingler showed [28], through numerical

simulations, that a reduction in the error in the estimated

frequency of a real sinusoid is obtained if a Hamming taper is

employed in the calculation of Burg's partial-correlation

(PARCOR) estimates. This method of tapering is exactly that

reported in [ 8 1 by Burg.

In this chapter, we first derive an expression for the

-- estimated frequency error of a real sinusoid using Burg's tapered

method. This is a generalization of the error expression for the

untapered Burg's technique reported by Swingler [29]. We

subsequently use the error expression to derive an "optimum"

taper. Finally, simulation results comparing the optimum,

Hamming and rectangular tapers in obtaining Burg spectral estimates

of complex sinusoids in noise are given.

VI.l Generalized Error Expression

In this section we derive an expression for frequency error

of sinusoid based on the tapered Burg technique for a ceneral
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weighting function. Let the taper Wm(t) be defined as a

function of the continuous variable t for Itl < N and take

on the value zero elsewhere. Let the discrete time version be

W =w(k - (VI.I)
mk m

As in (6) we assume that the window is normalized and non-negative:

N-m
E wm= 1 ,all m,

-k=O

W >0 , all m,k.

The non-negativity insures that the magnitude of the partial

correlation coefficients (PARCORs) do not exceed unity.

For the data record xk,k=0,1,. .. ,N, the mth PARCOR is given

in this tapered Burg method as [ 8]

N-m
- wmkDmkEmk

k=O
arm =-2 (VI.2)N-r n 2 2

wink (D + Emk)
k=0

where Dmk and Emk are given in (VI.6).

For xk = cos (Ok + ), the first PARCOR is

2 =N-i
sin 2 (a) w lkcoS(2ek+e+2 )

a 1l - cos(6) + k=O (VI.3)
N-1

l+cos(e) E wlkcos( 2 6 k+5+2 )
k=O

We choose to express the first PARCOR as

all = -cos(6+6)

-[cos(O)+6sin(0)3 , for 6 << 1 (VI.4)
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From (VI.3) we identify 6 as

N-I
Wlk COS (26k+6+2p)

k= N- (VI.5)

l+cos(e) Z w cos(26k+6+2)
k=0 1k

To look at the conditions which make 6 small we further assume

that the window w1 (t) is even and thus its Fourier transform

W 1 M) is real. The summation in (VI.5) then becomes

N-I
E wlkcos( 2 ek+9+ 2 f)=

k=0
(VI.6)

cos(N6+2¢) Z (-) n(N-)w 1 (27n+2)~n=-w

Since W 1 () is bandlimited on the order of 2 r/s we can approximate

the summation when 1-31 < 7 and N >> 1 as

Z w wlkCOs(2ok+e+2 ) cos(NO+24)W1 (2(1)
Sk=0 (VI.7)

0, < < - NI

From (VI.6) and the constraints on wMk we have that W 1 (0) 1.

Thus we see that the assumption 5 << I is valid when !e! <

and N >> 1.

The second PARCOR is exactly given by

B N-2+ A E w2kcos( 2 0k+ 2 +2 f)

22 = A N-2(VI 8)

+ E w2kcos( 2 ek+ 2 e+ 2 ¢)
k=0

where

• " --
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2I
A = a 2 + 2alcos(O) + cos(20)

- 2
B = al2 + 2alCO) + I

11 1 1cs) 1

Using the approximation for a1 results in

A = -(1-62 )sin(e) , B =  (1-62 )sin(e)

and thus

a22 1 , 6 << 1

The Levinson recursion gives a21 = a11 + a2 2anl z 2all and the

resulting PEF is then (1, -2 cos (e- ) , 1). Comparing this to

the ideal PEF (1, -2 cos (0) , 1), we identify the frequency

error as

Af= 2S

N-1
- w lkcos(20k+6+24)

i k=O01
S-- sin(6) N- (VI.9)2cr N-i

l+cos(e) 7 wlkcos( 2Jk+0+24)
k=O

.- which may be approximated by

N-1
- sin(6) Z wlkcos( 2 ek+0+ 2 ),

k=O (VI.lI (a))
,rTT T

N-1 < I0f < 7T - --T

1 sin(0)cos(N0+2¢)W (20) (VI.10(b))
1

For uniform weighting, W1k N ' we have

N-I 1 sin(NO)
Swlkcos (2ek+0+2¢) = cos (N0+2P) sin()

k=0

and (10a) reduces to Swingler's expression [29].

-- ,
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VI.2 An Optimum Taper

If we consider the phase p as a random variable uniformly

distributed on [-7,r) then the mean value of the frequency error

is zero, using (10a). The variance of this frequency error is then

1 .2 N-1 N-I
var(Af) = - sin (6) w 2 Wlkwl.cos( 2 9 (k-Z)). (VI.II)

8'r k=O Z=0

As a criterion for selecting a taper we use the average frequency

error variance:

17T
-- <var(Af)> =- var(Af)d6

0

~N-1 N-1
1 . N- lk 1 1 ] (VI.12)

83 k Z lklZ2 k - 4 l-k+Z l+k-Z '

where the subscripted delta is the diqital (Kronecker) impulse.

With the normalization constraint introduced using the Laarange

multiplier X the resulting optimum taper is given by the solution of

.l ,j = i±l

.. = , . =, .=A (VI.13)C _-1 - 'c i 2' i

0 otherwise

The general system of equations with a tri-diagonal coefficient

matrix has a known recursive solution related to the LU decomposition

of the coefficient matrix (see for example [301). For the system

of equations with the special coefficient matrix in (VI.13) , we

have derived closed form expressions for the taper coefficients

(Appendix B). These are given for the m-th order PARCOR by:

w 6(k+l) (N-m-k+l) k=0 N-m (VI.14)Wmk (N-m+l) (N-m+2) (N-m+3) ' .'''''
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Thus, this optimum taper is parabolic in form, it is even,

positive and has a maximum at k - N-m+l Furthermore, knowing
2

adWmo and wml from (VI.14), one can generate the remaining

coefficients recursively from:

Wmk = 2wm(k-l) - Wm(k-2) - X (VI.15)

VI.3 Simulation Results

The effect of tapering was numerically investigated by

generating spatial samples of complex sinusoids in noise for

* various, phase and angle (frequency) combinations. For brevity

of space, however, only the results of a very few representative

simulations are included in this report. The method designations

7 on the plots are: Burg for untapered Burg method, WBurqH and

WBurgO for tapered Burg technique using the Hamming taper and

the optimum taper respectively. The Hamminq taper is used for

comparison with the simulations in [28].

Figure (VI.l) shows three tapered Burg spectral estimates

of two complex sinusoids at -30* and -45' off broadside with zero

-phases each, in complex white noise. The signal-to-noise ratio

is 15 dB where SNR(dB) = 10 log( A m p litude It is obvious in this
2

n

example that WBurgO has the smallest frequency errors as well as

the highest resolution. This has been the case in the great

majority of the examples that we have run thus far. Except

for a few cases the bias of WBurg optimum has been lower than Burg.

The resolution of WBurg Hamming, however, was found to be consistently

poorer than Burg and WBurgO. Figure (VI.2) shows the spectral

-- estimate of a real sinusoid with a large SNR. It can be seen that
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WBurg optimum taper has reduced the frequency error and prevented

peak splitting which is shown by the untapered Burg method of

order 4. This again was accomplished without sacrificing

resolution.

Figure (VI.3) is a plot of the maximum frequency error for

each method for a unit amplitude real sinusoid at angle (frequency)

of e = ./5 as a function of the number of data samples. The

maximum frequency errors were found by solvinq for the pole

locations over the range of values for the sinusoid phase @.

The noise variance is a2 = 0.025. It should be noted that the~n

optimum taper was derived on the basis of minimum average frequency

variance. This simulation shows comparative error reduction for

the maximum frequency error only for 6 = r/5 between the optimum

and Hamming tapers. As was pointed out earlier, however, all

of our simulations have shown better resolution for the optimum

taper compared to the Hamming one. It is also interestina to note

that the main reduction in frequency error is apparently obtained

by tapering the first order residual enerqy only. This has also

been borne out by the majority of our simulations.
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VII. SU4MARY AND CONCLUSIONS

Data-adaptive spectral estimation methods have found

widespread application in recent years, notably in radar signal

processing. The work summarized in this report was concerned

with two such methods: the autoregressive (AR) and the auto-

regressive-moving average (ARMA) spectral estimators. Our

main concern in this investigation was the resolving capabilities

of the different models in the presence of noise and the

'-tatistical properties of some new spectral estimators.

Since the AR methods are by far the most popular, we

postulated an AR noiseless signal model. The resulting appropriate

model in the presence of noise was then shown to be ARMA. To

investigate the degradation in resolution in the spectrum of

noisy signals, we also used a parallel resonator model for the

- signal. This model was also shown to be equivalent to an ARMA

one. The resonator model, however, made it possible to evaluate

the loss in resolution as a function of signal-to-noise ratio and

signal parameters.

Since an ARMA model may be approximated by a high-order

AR one, attention was next focussed on the development of a

robust method for identifying the order of an AR model. A method

closely related to that of Akaike's information criterion was

developed. This method proved to be more stable than the

minimum AIC.

ARNA spectral estimation was treated extensively in this work.

The generality of the model was important from two distinct points

-of view: i) as the apprcpriate model for noisy AR signals, thus

to improve resolution; ii) as a resonable model for signals with
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spectra, narrow or wide, possessing deep nulls and/or sharp

roll-offs. Because of the computational complexities of the

optimum (maximum likelihood) method of estimating the ARMA

parameters, several sub-optimum, computationally efficient

techniques were devised. These methods behaved reasonably well

for moderate to large data samples, but were inferior to the

optimum one, as expected, in terms of statistical efficiency.

The efficiency of various classes of ARMA spectral estimators

are currently under further investigation by Monte Carlo

simulations and will be reported on in the future.

The maximum entropy method (MEM) of spectral estimation,

using Burg's technique, has been very popular in estimatinq

the spectra of sinusoidal type signals. It has beer known,

however, that the accuracy of such spectral estimates is

significantly influenced by the phase of the sinusoids. Based

on some recent results, we developed an optimum taper for the

residual eneraies in the Burc MEM technique. It was shown that

the use of such a taper substantially reduced the sensitivity

-- of the spectral peaks to the sinusoids' phases and markedly

reduced the occurrence of line-splitting in the usual MEM

estimates. It is remarkable that these improvements were made

without sacrifice in the resolution of the spectral estimates.

Work is continuing to more fully explain the effect of such a

taper and its ramifications in Burg-type parameter estimation

techniques.
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APPENDIX A

Equation (11.25) is

r (0)r (2) - r2 (1)' r Ym Ymam2  2 2 
(A.1)r (0) - r (1)Ym Ym

= _p2
m

Now substitute for r YM(0), r ym(2) and rYM (1) in A.1,

222 22 2 22 2

(a 2o 2 c°S m + 2 ' 
) (amo 2u;2cos(2w- m))-(a2mc cos(W - 2)

" 2222 2 2 2 2
(am ou32CoS m+ 2,) -(amo ocxCos (W- m))

C12 (A .2)
M

Expanding the numerator and denominator of equation A.2, we Qet,

-- 2 2 22 2 22 2
(ac) 2 Pmcos cos(2w-m)+a2au 3,c2 cos(2w-m)

MO 2 _2 2 22 2- Cam oUu) a Cj 2am ( W ,om)

2,42 222 2 2

= _a,2
- (a 0 CA Ci os (W -mo n in i M.

m, (A.3)

- Define the signal-to-noise ratio as
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r (0 2

2

r (0)

2
r (0

=y- 1 (A.4)

where,

2 2
r (0) = a a 2ccosm
YM mo u in

4Dividing the numerator and denominator of A.3 by a4 and using

A.4, we get,

cos(2wm- ) cos(2w m-m) 2 Cos 2(wmfm) 2
7 cos~pm  +7 cos m  Co co2 pmr m

i 0S4 Cos (wp

Lin Y2 + 1+ 2Y-Y 2  mflCos in in

2 (A.5)

Rearranging terms in A.5, we have

2 cos icos (2wm-m)-cos2 (Wm-om) +oSCOS - m

co2 2 s2 +cos

'nm-PmC (wm- Ym) ] +2 cOS2 m+cosm

,2

2 M (A.6)

. Pm

,2
As ¥.. .2 1 and the left-hand side of equation A.6 is,

i,.
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cos mcos(2w -p)-Cos 2(w-_ )

Cs2 -P2 CS2 ( ):-1I (A.7)

Solving for P 2 Co w_ i . egt
m in A.megt

2o 2 2A8

122
+c2 m (A.9)

Subtithe becinome toset

2'+l 2 [co mcos(2w - 2 (cs2wm _ m J+Ycos cos2w-4 wm m

( +2 Foos m cosw p)+o 2)+ w M)j+Yco+G+os 2  Cst

2m (A.1)

Butio the 0 signa-to-nis rtoieutin
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I2 CosO~C (2 2 w - -o cs

-2cos 2(w -pm )]2o~cs2m-m)+COS2(Wmm)

Cos(w-lm -Cs m os2w - )+2 [OS mc mcw )2wm2 )

+Cos w -. M)+3 COS2 -Cos~mo (2m 4 ( m) (w M-M)

m (.1
2 ( . 1

m

MWLA
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APPENDIX B

In this appendix we derive a closed form expression for

the solution of the following equations:

2 -1 0 . .. 0 w1

-1 2 -1 0 . . . 0
0 -1 2 -1 . . . 0 = (B.I)

0 . . . 0 -1 2 wN

where A is the normalization factor for W.

A recursive alaorithm for a set of linear equations with

a general tridiagonal coefficient matrix is given in [30]. We

use the notation used in this reference to derive our closed

form solution.

The solution for w1 = w N is given by

NN

where according to [30]

gk = (k-l) k=l N

Xk =  2+0 k ' k=2, . ... N

(B.3)
cca = 2

1

Bk = k- i

We first derive an expression for Bk* Let Bk = k/ 6 k ' where

Vk and 6k are integers.

From (B.3)

3k 2 + k1 k=2, ,N (B.4)
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Then

k 21 6k-i (B. 5)

k 2 k-I k-i k-i... 2 + T '
k-i

Now let 6 k-i + mk-i then

V k _ 
6 k-i (B.6)

mk k-i + mBk-I

But we have v 2  1, 52 = 2 and m 2 = 1 and from (B.6) it is

obvious that mk = constant. Therefore,

Vk 6 k-l

old k 'k-l+l

or with v2  1 , 2 = 2

= (k-1) (B.7)

a k now simply follows as

k=2 k"

Let hk = kg k and substitute for qk in (B.3). hk then satisfies

the difference equation

1- k k_1  = k\ , h o = 0 (B.9)

Z-transform (B.9) to get

- H(z) z Z \ (B.10)
reu n (z-l)2

i ' resulting in
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k
hk = (step)*(ramp)A A Z j

j 1 (B.I1)

Therefore

k+1 (B.12)g k = 2- -

Substitute in (B.2) to --t

wN = w N X (B.13)

Using (B.13) as the initial condition we can now solve for

other w i 's, noting that

wk - 2 Wkl + Wk-2 = X , k=2, ... N (B.14)

wo= 0 , w NY

Z-transform of (B.14) results in

d-z 3 x (N+2) zX zW(z) 3 +  + (B.15)

(z-l) 3 (z-l) 2 (zi) 2

Taking the inverse transform of (B.15) gives

A(k+l) (k+2) (N+2)kA +k 2 2

or

-k (N+l-k) (B.16)
k 2

The normalization factor A can now be found as

N -1 = 12
Sk N (N+I) (N+2) (B.17)
k=l

Alternatively,

N (B.18)'N+l ='N "N+3

' -. . . l -- ' .. . .
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